The weak repulsion property

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Weak Repulsion Property

In 1926 M. Lavrentiev [7] proposed an example of a variational problem whose infimum over the Sobolev spaceW, for some values of p ≥ 1, is strictly lower than the infimum overW1,∞. This energy gap is known since then as the Lavrentiev phenomenon. The aim of this paper is to provide a deeper insight into this phenomenon by shedding light on an unnoticed feature. Any energy that presents the Lavr...

متن کامل

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

The Strong Approximation Property and the Weak Bounded Approximation Property

We show that the strong approximation property (strong AP) (respectively, strong CAP) and the weak bounded approximation property (respectively, weak BCAP) are equivalent for every Banach space. This gives a negative answer to Oja’s conjecture. As a consequence, we show that each of the spaces c0 and `1 has a subspace which has the AP but fails to have the strong AP.

متن کامل

weak banach-saks property in the space of compact operators

for suitable banach spaces $x$ and $y$ with schauder decompositions and‎ ‎a suitable closed subspace $mathcal{m}$ of some compact operator space from $x$ to $y$‎, ‎it is shown that the strong banach-saks-ness of all evaluation‎ ‎operators on ${mathcal m}$ is a sufficient condition for the weak‎ ‎banach-saks property of ${mathcal m}$, where for each $xin x$ and $y^*in‎ ‎y^*$‎, ‎the evaluation op...

متن کامل

Weak difference property of functions with the Baire property

We prove that the class of functions with the Baire property has the weak difference property in category sense. That is, every function for which f(x+h)−f(x) has the Baire property for every h ∈ R can be written in the form f = g+H+φ where g has the Baire property, H is additive, and for every h ∈ R we have φ(x+h)−φ(x) 6= 0 only on a meager set. We also discuss the weak difference property of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2007

ISSN: 0021-7824

DOI: 10.1016/j.matpur.2007.06.002